

Corporation for National Research Initiatives

Digital Object Protocol Specif ication
Sean Reilly <sreilly@cnri.reston.va.us>

Version: 1.0

November 12, 2009

This work was supported in part by DARPA under Grant HR0011-05-1-0003.

Table of Contents

1. Overview.... 4

2. Digital Object Protocol.. 4

2.1. Server Resolution ... 5

2.2. Communication Messages ... 6

2.3. Connection Initialization .. 8

2.4. Multi-Channel Mode .. 8

2.5. Connection Control.. 9

2.6. Authentication and Connection Encryption ...11

2.7. Connection Encryption ..14

2.8. Additional Client Authentication (Certificates) ..15

2.9. Invoking Operations ...16

2.10. Operation Forwarding..17

3. Digital Object Operat ions ... 17

3.1. Operation Notation ..17

3.2. Data Model ...18

3.3. Operation Specifications ...20

3.4. Depositing a Digital Object ...24

3.5. Accessing the Document as a Digital Object ..25

1. Overview

CNRI’s Digital Object Architecture provides a mechanism for the creation of and ac-

cess to digital objects as discrete data structures with unique, resolvable identifiers.

These Digital Objects provide a foundation for representing and interacting with in-

formation on the Internet. The Repository Access Protocol (RAP) consists of three

parts: 1) An identifier resolution system (Handle), 2) a low level communication proto-

col (Digital Object Protocol, or DOP), and 3) a set of Digital Object Operations (DOO)

that can be applied to digital objects over DOP connections. DOP provides entity

authentication, connection encryption and multi-channel communication over a

single TCP/IP socket. The Handle System is specified at http://handle.net/ in three IETF

RFCs, and this document provides a specification of the Digital Object Protocol and

Digital Object Operations that combine to form RAP.

2. Dig ital Object Protocol

This section describes the Digital Object Protocol (DOP) - the protocol and authentica-

tion mechanism used to interact with digital objects through a connection to a digital

object server. Each interaction consists of a caller invoking or applying an operation

on a digital object. The server, caller, each operation, and the object itself are all

uniquely identified using Handle Identifiers.

Operations are applied to objects by digital object servers in which the objects are

said to reside. The DOP defines the method by which entities on the network com-

municate with DO servers for the purpose of invoking operations on the digital ob-

jects within them.

A digital object server is addressed as a digital object that contains other digital ob-

jects. Operations are applied to digital objects by the digital object servers in which

the objects reside. The DOP defines the method by which entities on the network

communicate with DO servers for the purpose of invoking operations on the digital

objects within them.

An operation on a digital object consists of the following elements:

 - CallerID: The identifier of the entity requesting invocation of the operation

 - ObjectID: The identifier of the object to be operated upon

 - OperationID: The identifier that specifies the operation to be performed

 - Input: A stream of bytes that contains the input to the operation, including any pa-

rameters, or content

 - Output: A stream of bytes that contains the output of the operation, including any

content or messages.

Upon invocation of an operation, the client will write data to the invocation's input

stream and read data from the output stream. The DOP API includes a mechanism for

including operation parameters as a set of key-value pairs that are considered part of

the input.

2.1. Locating an Object

The first step to interacting with a digital object is locating the server where it currently

resides. This is done by using the Handle System to resolve the handle identifier of the

digital object to a set of handle values (Figure 1). Every handle value has a type

(UTF-8 string) and a data (byte array) field whose format depends upon the content

of the type field. The data field of the handle value with type "CNRI.OBJECT_SERVER"

is a UTF-8 string containing the identifier of the DO server that is responsible for the ob-

ject.

Figure 1: Resolving an Object ID to a Server

Resolving the DO server identifier yields a handle value with type

CNRI.OBJECT_SERVER_INFO that contains information about the server such as IP ad-

dress, public key, port number, protocol version, name and description. This informa-

tion is encoded in an XML format, leaving room for additional information for future

implementations. With this information the DO client can connect to, authenticate,

and interact with digital objects on the same server. The XML format for the server in-

formation is as follows:

The top level tag is <serverinfo> and contains one or more <server> tags. Each

<server> tag contains the following sub-tags:

 <id> - An identifier that differentiates this server from others in the same service

 <label> - A natural language label for the server

 <publickey> - A hexadecimal encoded public key that can be used to authenticate

the server

 <hostaddress> - A text string indicating the IP address of the server

 <port> - An integer encoded as a text string, indicating the port on which the server

can be contacted

 <protocol> - A text string indicating the basic protocol spoken by the server

The following is an example of a CNRI.OBJECT_SERVER_INFO value:

<serverinfo>

 <server>

 <id>1</id>

 <label>sean's test server</label>

 <publickey>0000000B4453415F5...</publickey>

 <hostaddress>127.0.0.1</hostaddress>

 <port>9901</port>

 <https-port>443</https-port>

 <protocol>DOP</protocol>

 </server>

</serverinfo>

During handle resolution, the 'certify' flag is set for all Handle System messages in order

to verify that the information returned by the Handle System was not modified by an

unauthorized party.

Figure 2: Resolving a Server ID to Connection Information

Note: A client can choose to invoke operations on digital objects via registries that

are not referenced in the digital object's handle. This capability can be used to im-

plement proxies for interacting with digital objects in order to provide additional serv-

ices and operations on the objects. For more information on this feature see the For-

warding Operations section.

2.2. Communication Messages

Most messages in the DO protocol are represented as sets of key-value pairs with a

single UTF-8 text label. Pairs are ASCII text strings delimited by ampersands (&). Each

pair is split into a key and value by an equals sign(=). All non-ASCII characters, equals

signs and ampersands in the keys or values are UTF-8 encoded and %-escaped. A

message has the following structure:

 <message> := <messagetype> ':' <segment><newline>
 <segment> :=
 <segment> := <kvpair> <segment> '&' <kvpair>
 <segment> := <kvpair>
 <kvpair> := <key>
 <kvpair> := <key> '=' <value>
 <messagetype> := <encodedtoken>
 <key> := <encodedtoken>
 <value> := <encodedtoken>
 <encodedtoken> := <encodedtoken><alphanumeric>
 <encodedtoken> :=
 <alphanumeric> := 'A-Z'

 <alphanumeric> := 'a-z'
 <alphanumeric> := '0-9'
 <alphanumeric> := '%'
 <alphanumeric> := '_'
 <alphanumeric> := '-'
 <newline> := 10

In the DO API, keys are represented as UTF-8 text strings. Values are stored as UTF-8

strings, but many data types can be represented using a standard encoding:

 byte arrays - bytes are encoded in a hexadecimal string representation

 integers - encoded as the decimal string representation using ASCII 0-9

 real - encoded as the decimal string representation using ASCII 0-9 and .

 boolean - encoded as an ASCII 1 or 0

 string array - strings have ASCII commas escaped with an ASCII backslash, then con-

catenated together separated by an ASCII comma.

 sub-messages - key-value sets can be embedded in other messages by adding

each key-value pair after pre-pending a certain string to each key from the merged

set

These messages can be very easily encoded and decoded using a trivial amount of

code and resources, yet the messages themselves are extremely flexible and can

convey arbitrarily complex information.

In this document, messages will be displayed as a message type followed by key-

value pairs on separate lines as in the following example:

messagetype:

 key1 = value1

 key2 = value2

 key3 = value3

This is not to be confused with the actual encoding of those messages which looks

more like the following:

 messagetype:key1=value1&key2=value2&key3=value3

2.3. Connection Initialization

Communication with a digital object server is established using a standard TCP/IP

socket connected to the address and port contained in the

CNRI.OBJECT_SERVER_INFO handle value described above. The client initiates com-

munication by sending a message with the following key-value pairs:

init:

 protocol = dop

 protocol_major_version = 1

 protocol_minor_version = 0

The server responds with an acknowledgment that includes the highest protocol ver-

sion that both the client and server understand:

response:

 status = OK

 protocol_major_version = 1

 protocol_minor_version = 0

If there is an error with the first exchange, the server will response with a status other

than "OK" and an optional "code" and "message" pairs:

response:

 status = ERROR

 code = 102

 message = Unknown protocol: 'HTTP'

Additional key-value pairs can be included with all messages in order to provide addi-

tional information about the client, communication parameters, etc. Unexpected

key-value pairs should simply be ignored.

Immediately after sending the initial response, the server will go into multi-channel

mode. The client will go into multi-channel mode immediately upon receiving the

initial response from the server. Multi-channel mode is described in the next section.

2.4. Multi-Channel Mode

In multi-channel mode, multiple communication channels are multiplexed over a sin-

gle socket connection. A communication channel consists of a pair of byte streams,

one from which incoming bytes can be read, and one to which outgoing bytes can

be written. Bytes written to the outgoing stream of a channel can be read from the

incoming stream of the corresponding channel on the other side of the connection,

and vice versa.

Each channel is uniquely identified within a connection by a 32 bit integer. When

bytes are written to a channel, they are prepended by the channel identifier and the

number of bytes being written. For example, writing the bytes 'abc123' to channel 12

of a connection will cause the following to be written to the socket connection:

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

.--.

| 12 |

|--|

| 6 |

|--|

| 'a' 'b' 'c' '1' |

|--|

| '2' '3' |

'------------------------------'

The channel ID, number of bytes, and content bytes are referred to as a 'chunk'. The

process that manages the connection must ensure that only one chunk is written to

the connection at a time. It is recommended that channel streams be buffered and

flushed only when appropriate to ensure that fewer chunks are sent.

On the receiving end, it is recommended that the process that manages a connec-

tion maintain a thread that reads chunks from the connection and adds them to a

buffer associated with each channel where they can be read by separate threads.

Figure 3: Multiplexing Chunks into Channels

2.5. Connection Control

Upon entering multi-channel mode, both the client and server understand that a

single channel with identifier 0 already exists. Channel 0 is referred to as the 'control

channel' and is used by the process that manages the connection to exchange

messages with the other side of the connection. Communication on the control

channel consists of a series of messages as defined above. Because these messages

are encoded in ASCII and terminated with a line feed, control messages are easily

debugged with simple tools.

Some of these messages, called 'synchronous' requests, require a response from the

other side of the connection in order to fulfill their purpose. Because messages may

be interleaved on the control channel, synchronous requests have an additional

value with a key of '_requestid' added to them by the connection manager. The re-

cipient of a synchronous request will include the same '_requestid' value in the re-

sponse to the request. After a synchronous request is sent, the message sender waits

for a response message that contains the same value for the '_requestid' key. When

that response is received, or an appropriate amount of time has elapsed (currently 10

minutes) control is returned to the process that sent the synchronous request with ei-

ther reference to the response or an error code.

Messages sent over the control channel are used to open new channels, authenti-

cate the client and server to each other, establish an encrypted link for the connec-

tion, and any other connection-level operations.

Both sides of a connection will continually listen for messages on the control channel.

When a control message is received, the message type field determines how it is

processed. The following message types are understood in version 1.0 of the proto-

col:

openchannel: Requests that a new channel be opened. The sender must provide

a positive integer value associated with the key 'channelid' that indicates the identi-

fier for the channel that is to be created. If the client provides no identifier, an invalid

identifier (ie non-integer or negative value), or an identifier for a channel that al-

ready exists then the server will return an response with an error message to the cli-

ent. In version 1.0 of the protocol, messages with type 'openchannel' are only sent

by the client. Messages with type 'openchannel' require a response and can only be

sent by clients. In the Digital Object API, server connections register a callback/listener

that is notified when new channels are opened. Every new channel is treated as an

operation on a digital object.

closestream: Indicates that the other side of the connection has closed a byte stream

for one of the open channels. Messages of this type should include both a 'channe-

lid' and 'streamid' key whose values indicate the channel ID and the byte stream that

is now closed. The channel ID is an integer value, and stream ID is one of 'input' or

'output'. If the stream ID is 'input' then the byte stream from which the message re-

cipient reads is closed, If the stream ID is 'output' then the byte stream to which the

message recipient writes is closed. Attempts to read from a closed input stream or

write to a closed output stream should result in an error. Messages of type 'clos-

estream' can be sent by the client or server and do not require a response.

authenticate: Requests that the message recipient authenticate themselves, proving

their identity to the message sender. Messages with type 'authenticate' can be sent

by either the client or server and require a response. Authentication messages are

outlined in detail in the 'Authentication and Connection Encryption' section.

response: Indicates that this is a response to a message that was sent by the this side

of the connection. The connection manager should extract the value associated

with the '_requestid' key and use it to locate the pending request with the same

value for the '_requestid' key. If no request with the same request ID exists, then the

response is ignored. If a request with the same request ID exists, then any processes

that are waiting for a response to the request are notified of the response, and the

request is removed from the list of requests awaiting responses.

2.6. Authentication and Connection Encryption

The purpose of authentication with the Digital Object system is to verify the identity of

the entity on the other side of the connection for logging purposes as well as to es-

tablish their access privileges. This is done using a modular authentication system that

is currently based on DSA or RSA public/private keys, but can easily be fitted to an al-

ternate system.

The security built into the Handle System plays a large role in the authentication

mechanism of the digital object protocol. In order to establish the identity of an entity

in the digital object world, it must be possible to securely bind an identifier (handle)

with a public key. This is done using certified resolution with the Handle System Proto-

col (see RFC 3652).

2.6.1. Authentication Request

Each side authenticates the other using an authentication request (a message with

type 'authenticate') on the control channel. The authentication request must con-

tain the entity_id, nonce and setup_encryption keys. If the boolean setup_encryption

key has a true value, the public_key and public_key_alg keys are also required. The

purpose of these keys are described below.

entity_id: String value indicating the identifier for the client that is making the connec-

tion. This is currently not used, but in a future version of the protocol the server will

have the option of returning the session encryption information encrypted by a pub-

lic key that is associated with the client.

nonce: Byte array containing a set of bytes to be signed by the message recipient.

The byte array should contain unpredictably random bytes.

setup_encryption: Boolean value indicating whether connection level encryption

should be established as part of the authentication process. The setup_encryption

flag should always be set to true in the first authentication message on a connection.

If a connection is not encrypted, the authentication is subject to man-in-the-middle

attacks and will have no meaning. The only connections for which encryption can

be omitted are connections from anonymous clients that do not require server

authentication. The setup_encryption flag should only be set in the first authentica-

tion exchange, when the client authenticates the server.

public_key: If the setup_encryption value is true, then the public key in the request

should be a Diffie-Hellman public key encoded into a byte array according to the

X.509 standard.

public_key_alg: If the setup_encryption value is true, this will be the text string "DH",

indicating that the public_key parameter is a Diffie-Hellman key. Future versions of the

protocol will support more methods of exchanging secret keys.

digest_alg: This specifies the algorithm that the recipient should use as a digest if the

client chooses to authenticate using the hsseckey authentication method (see be-

low). If this key is missing then the recipient can choose their own digest algorithm

when authenticating using the hsseckey method.

2.6.2. Authentication Response

The recipient of the authentication request will sign the bytes from the nonce pa-

rameter and return a response with the auth_type key indicating the method of

authentication. If the setup_encryption flag in the request was set to true then the

cryptmacalg, cryptalg, cryptmode, cryptpadding, cryptsecretkey, public_key, and pub-

lic_key_alg keys should also be present in the response. The definitions of these keys

are as follows:

auth_type: A text string that indicates the method used to generate the signature

that will authenticate the recipient. Possible values are "hspubkey" and "hsseckey".

The method of authentication determines which other keys must be present and the

data that they may contain.

auth_alg: A text string specifying the algorithm that was used to generate the signa-

ture. The current version of the protocol supports either "SHA1withDSA", "MD5withRSA"

or "SHA1withRSA". This key applies only to the "hspubkey" authentication method.

digest_alg: A text string specifying the digest algorithm that was used to generate the

signature. The current version of the protocol supports either "sha1" or "md5". This key

applies only to the "hsseckey" authentication method.

client_nonce: A byte array consisting of the nonce that was generated by the recipi-

ent of the authentication request. The purpose of this nonce is to introduce an un-

predictable component to the digest that ensures the resulting signature can not be

used to successfully respond to an authentication challenge from the handle server.

This key applies only to the "hsseckey" authentication type.

auth_response: A byte array consisting of the encoded signature. The format of this

byte array depends upon the authentication type and are described below.

For "hspubkey" authentication, the hashing algorithm indicated by the auth_alg key

(either SHA1 or MD5) is used to hash the nonce byte array from the authentication

request. The result of that hash is then signed using the signature algorithm that is

also indicated by the auth_alg key (either DSA or RSA). If a DSA key is used then the

signature is encoded as an ASN.1 sequence of two INTEGER values: r and s, in that

order according to the FIPS PUB 186 standard. If an RSA key was used then the signa-

ture is encoded according to the PKCS #1 standard.

For "hsseckey" authentication, the auth_response contains the digest of the following

items in the order given: 1) secret key bytes, 2) nonce, 3) client nonce (specified by

the client_nonce key), and 4) secret key bytes (a second time). The digest algorithm

is specified by the digest_alg key and can be either "sha1" or "md5". The sender of

the authentication request can specify the digest algorithm using the digest_alg key

or it can let the recipient of the authentication request choose the algorithm. If the

recipient of the authentication request uses a digest algorithm other than the one, if

any, specified by the sender then the authentication fails.

cryptmacalg: A text string specifying the hashing (MAC) algorithm that is used to verify

the contents of each chunk of data. The value of this key can currently be either

"SHA1" or "MD5". If this key is not present, the "SHA1" algorithm is used.

cryptalg: A text string specifying the encryption algorithm that will be used. The cur-

rently supported encryption algorithm is "DESede", often referred to as triple-DES. If this

key is not present, the "DESede" algorithm is used.

cryptmode: A text string specifying the mode component of the cipher. This can be

one of the following:

 "NONE" - No mode

 "CBC" - Cipher Block Chaining Mode, as defined in FIPS PUB 81

 "CFB" - Cipher Feedback Mode, as defined in FIPS PUB 81

 "ECB" - Electronic Codebook Mode, as defined in FIPS PUB 81

 "OFB" - Output Feedback Mode, as defined in FIPS PUB 81

 "PCBC" - Propagating Cipher Block Chaining, as defined by Kerberos V4

The current implementation defaults to using ECB.

cryptpadding: A text string specifying the padding component of the cipher. This

can be one of the following:

 "NoPadding" - No padding

 "PKCS5Padding" - The PKCS #5 scheme described in the RSA standard

The current implementation uses PKCS5Padding.

cryptsecretkey: A byte array containing the encrypted session key. This value is de-

crypted using the Diffie-Hellman key exchange algorithm. When using the "DESede"

encryption algorithm, the decrypted value will be the DES encryption key. If the key

value consists of more than 24 bytes, then only the first 24 bytes are used.

public_key: A byte array containing the Diffie-Hellman public key for the recipient of

the authenticate request. The byte array is an ASN.1 encoding of a public key, en-

coded according to the ASN.1 type SubjectPublicKeyInfo. This public key is combined

with the Diffie-Hellman keys from the authentication request to decrypt the session key

in the cryptsecretkey value.

public_key_alg: A text string indicating the algorithm to be used with the public_key

key. If the public_key_alg key is missing then it is assumed to be "DH".

Once the response is received by the sender of the original authenticate request,

the original sender can verify the signature and thus be confident of the identity of

the entity with which they are communicating. If the authentication method is

"hspubkey" then the signature can be verified by retrieving the public key of the re-

cipient using a secure mode handle resolution.

To verify an "hsseckey" authentication response, the server must build a "verify chal-

lenge" handle request (handle system op code 201) based on the nonce, cli-

ent_nonce and auth_response values and submit the request (after setting the 'cer-

tify' flag) to the handle server or servers that contain the user's secret key for verifica-

tion.

2.7. Connection Encryption

After receiving a response to an authenticate request, the two sides of the connec-

tion now have a shared session key which is used to encrypt further messages on the

connection. It is important that the new session key be applied to the connection

before any further messages are exchanged. Both sides of the connection should

begin encrypting and decrypting all messages immediately after the authentication

response is sent/received.

When a connection enters encrypted mode, the data portion of each 'chunk' as de-

fined in the Mult i-Channel Mode section are encrypted before being written to the

socket. This results in chunks with the following format:

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 .---.

 | 12 |

 |---|

 | 4 |

 |---|

 | encrypted data |

 '---'

The data portion of each incoming chunk is decrypted immediately after having be-

ing read from the socket.

2.8. Additional Client Authentication (Certificates)

In addition to the public-key based authentication, clients and servers may also pro-

vide certificates establishing their credentials as a member of a group or organization.

In any authentication response, clients or servers can include a set of certificates that

prove their membership in an identified group.

These certificates are included with the authentication response in the following keys:

numcreds: Integer indicating the number of credentials being included

cred[0-N]: Multiple key-value pairs labeled cred0, cred1, cred2, etc. Each credN

value is a byte array that contains an X.509-encoded certificate.

Both the subject and the issuer principals are encoded in the certificate as X.500 dis-

tinguished names. The handle identifier of each entity is specified in the organization

("O") attribute of the distinguished names. The organization attribute for the subject

must be equal to the entity being authenticated in a case sensitive comparison of

the identifiers. The entity identified as the issuer is understood to have delegated all

of their access rights to the entity specified as the subject of the certificate for the pe-

riod of time for which the certificate is valid. Any access that has been granted to the

issuer should also be considered granted to the subject. For this reason, the entity

doing the authentication is responsible for verifying that the certificate was signed by

the issuer of the certificate. This can be done by resolving the issuer's identifier to a

public key using a certificated handle resolution, and then using that public key to

verify the signature on the certificate.

2.9. Invoking Operations

With digital object servers, the control channel (with ID zero) is used for authentication

and connection administration. Each additional channel is used to invoke an opera-

tion on the digital object server. New channels are created when the client sends a

openchannel message to the server over the control channel. The openchannel

request includes the ID of the channel to be opened, meaning the client is responsi-

ble for preventing the use of duplicate channel identifiers.

For each new channel, the server will allocate a thread to process the new channel

and perform the operation being requested. The client will send an operation re-

quest over the new channel, consisting of a message with the following keys:

callerid: A text string containing the identifier for the entity making the request

objectid: A text string containing the identifier for the digital object upon which the

operation should be performed.

operationid: A text string containing the identifier for the operation that should be

performed upon the object.

params: A sub-message containing application-level parameters for the operation.

After reading the initial operation request, the server will:

 1) Log the operation request and begin recording everything sent over the input

and output streams of the operation channel.

 2) If the caller is not anonymous and has not previously been authenticated on this

connection, send an authenticate message to the caller to establish their identity as

indicated by the 'callerid' value. If the identity can not be established, return an error

and close the channel.

 3) Establish whether the authenticated client has permission to perform the specified

operation on the specified object. If the client does not have the right to perform the

operation, return an error and close the channel.

 4) Perform the operation, using the input and output streams for the operation

channel as input to and output from the operation.

2.10. Operation Forwarding

While many operations will be performed on objects within the repository with which a

client is connected, the protocol does not require that the repository actually contain

objects for which it processes operations. A repository is simply a service through

which operations can be performed on objects. A repository could be configured to

perform some operations locally while forwarding other operations to a remote reposi-

tory. For example, a repository could perform operations on local objects itself, but

forward operations on objects that were not contained in the local repository to the

remote repository that was responsible for the target object. The responsible reposito-

ries are determined by resolving the object identifiers. By forwarding operations a re-

pository can act as a proxy for local clients that wish to access outside DO repositories.

A repository has several choices to make when forwarding an operation request to a

remote repository. First, the repository needs to determine whether or not it will allow

the client to perform the operation. Most repositories will not forward operations on

remote objects unless the client is a member of a trusted group, or is connecting from

a local IP address. A repository can verify that a client is a member of a group by re-

questing a group certificate as described in the Additional Client Authentication sec-

tion.

A repository must also decide whether the client's authentication will be forwarded to

the remote server or whether the repository will substitute its own set of credentials

when invoking the forwarded operation. If the repository uses its own credentials

then it will be responsible for both authenticating and authorizing the client before

forwarding the requested operation. When the repository uses its own credentials for

forwarded operations it is hiding the identity of the client and substituting its own

authentication and group membership. A repository may choose to declare only a

certain subset of group memberships when forwarding operations on behalf of cer-

tain clients, thus enabling multiple levels of groups of clients even while keeping the

identities of clients private.

3. Dig ital Object Operat ions

This portion of the specification describes a set of operations that can be applied to

digital objects in CNRI's Digital Object Architecture. These operations can be invoked

over connections with digital object servers using the Digital Object Protocol (DOP).

DOP allows the invocation of arbitrary named operations on objects that reside within,

or are accessible through, the digital object server.

3.1. Operation Notation

Before continuing, some notation is necessary in order to describe the digital object

operations. The digital object protocol, specified in the DIgital Object Protocol sec-

tion of this document, provides a means to invoke operations on a digital object and,

by extension, a DO server. In this document each operation will be described with

the following notation:

 [<input> |] <object>.<operation>[(<parameters>)] [| <output>]

where:

 <input> is a sequence of zero or more bytes that is sent as part of the operation. For

example, when performing an "add" operation, the input may be a sequence of

numeric values. The format of the bytes in the <input> sequence is determined by

the specification of the operation being performed.

 <object> is the identifier of the digital object upon which this operation is applied.

 <operation> is the identifier of the operation to be performed.

 <parameters> is a set of optional parameters passed to the operation. One exam-

ple of parameters might be a set of X, Y coordinates sent to a mapping operation.

 <output> is a sequence of zero or more bytes that is returned as a result of the op-

eration invocation.

Note: Because the <input> and <output> components are byte streams, operations

can read from the input stream while simultaneously writing to the output stream. Un-

like HTTP and many other protocols there is no need to wait until all of the input is re-

ceived before output is sent.

Because the operations are identified with handles in order to maintain uniqueness

and a strong identity, the operation identifiers are generally non-semantic and re-

quire a bit of description. The operation identifiers involved in registering and access-

ing basic digital objects are specified in the Operation Specifications section.

3.2. Data Model

By defining operations to interact with a specific data model we can construct and

use digital objects that represent any type of structure. The standard Digital Object

data model is reflected in the DO API and illustrated in Figure 4. Storage details are

omitted from the interface specification so that implementations can store data in the

best way for a given environment.

Figure 4: Example Instance of the DO Data Model

Each DO has a fixed, or intrinsic, set of attributes, a user defined set of attributes, and

zero or more elements containing the DO content, e.g., text, video, images, etc. Each

element, in turn, has a fixed set of attributes, a user defined set of attributes, and the

data pay load. All of these pieces are exposed and made available through the API.

Intrinsic attributes are those controlled by the Repository and will be part of every DO

and every Element.

The DO intrinsic attributes are Identifier, in the form of a Handle, Date Last Modified,

and Date Created. Future implementations could include additional DO level attrib-

utes, including user extensible attributes.

The intrinsic Element attributes are Identifier, in the form of a Handle, Date Last Modi-

fied, Date Created, and Size. The user extensible attributes may be set by users with

appropriate permissions. Likely applications include data type and subject specific

metadata.

Key attributes which are not specifically addressed by the basic model are ownership

and permissions. These attributes will be an important part of most DO implementa-

tions, but we don’t believe that there will be a single solution. Ownership and rights

data will likely be contained in user extensible DO level attributes or in separate data

elements.

3.3. Operation Specifications

The digital object operations referenced in this document must be fully specified and

any changes to the operation specification must be fully backwards compatible. The

protocol by which the operations are invoked is defined in the Repository Protocol

Specification, version 1.0. The identifier of each operation as well as that operation's

acceptable input, parameters, and expected output are fully specified below.

Note: The <message> structure from the protocol specification is used for represent-

ing structured information in the input and output for many of the operations.

Operation:: 1037/0

Description: List available operations. This operation is invoked to obtain a list of operations that

can be performed on the target object by the caller.

Parameters: None

Input: None

Output: A UTF8 encoded newline delimited list of the operations that can be invoked on

the target object

Operation: 1037/1

Description: Create digital object. This operation is only available on the repository/server ob-

ject itself. Successfully invoking this object results in the creation of a new object

on the target repository.

Parameters: objectid: (optional) the identifier of the object to be created.

initencoding: (optional) if the new object is to be initialized from a serialized ob-

ject then this parameter must be present to specify the encoding in which the se-

rialized object contents are provided. The currently supported encoding is “ba-

siczip” in which the input is a zip-encoded byte stream with each entry in the zip

file being one data element

Input: If the initencoding parameter is present then the input stream contains the serial-

ized version of the object contents. If no initencoding parameter is present then

no input is expected.

Output: A single <message> structure having a key objectid and corresponding value con-
taining the ID of the newly created object.

Operation: 1037/5

Description: Get data element. This operation returns the bytes contained in a specified data

element in the target object

Parameters: elementid: The name of the data element to be returned

Input: None

Output: The content of the requested data element

Operation: 1037/6

Description: Update data element

Parameters: elementid: the name of the data element to be updated

Input: The bytes to store in the named data element

Output: None

Operation: 1037/7

Description: Delete data element

Parameters: elementid: the name of the data element to be deleted from the object

Input: None

Output: None

Operation: 1037/8

Description: List data elements

Parameters: None

Input: None

Output: A series of <message> structures, delimited by newline characters. Each structure

contains a key elementid that specifies the name of the data element. Additional
keys and values, such as attributes, may be added to future versions.

Operation: 1037/10

Description: List objects. This operation is used to acquire a list of object in the repository and is

therefore only available on the repository object.

Parameters: None

Input: None

Output: A series of <message> structures, delimited by newline characters. Each structure

contains a key objectid that specifies an identifier for an object. Additional keys
and values, such as attributes, may be added to future versions.

Operation: 1037/42

Description: Get user credentials. This operation returns a list of valid credentials (currently

X509 certificates) that are stored in a digital object.

Parameters: None

Input: None

Output: An XML structure with a top level tag named <credentials> containing a series of

sub-tags named <credential>. Each <credential> tag has a hex-encoded X509

certificate for its value. Additional tags and tag attributes may be added to future

versions.

Operation: 1037/43

Description: Add user credentials. This operation is used to add an X509 certificate to an ob-

ject's list of credentials. The X509 certificated provided as input must specify the

target object as a principal in the certificate, not be expired and contain a valid

signature.

Parameters: None

Input: An X509 Certificate.

Output: None

Operation: 1037/44

Description: Retrieve object transactions. This operation is currently only available for the re-

pository object. It is used to retrieve a list of changes to objects since a given point

in time. This operation is used for incrementally mirroring objects across multiple

locations as well as (re)indexing any objects that have recently changed.

Parameters: txn_id: (optional) The identifier of the last transaction that the caller received. The

response should include only transactions that have occurred after the given

transaction ID. If no txn_id is provided then all transactions are returned.
Input: None

Output: A series of <message> structures, delimited by newline characters. Each structure

contains the following values:

 txn_type: the action that is represented by this transaction. This can be one of
add (create object), del (delete object), update_element, del_element, com-
ment, update_attribute or delete_attribute.

 object_id: the identifier of the object that was updated in the transaction

 tstamp: The transaction ID and transaction timestamp

 elementid: (optional) the data element, if any that was affected by the action

 atstamp: (optional) the actual time, in milliseconds since 1/1/1970 0:00.000 UTC
that the action occurred. The ts value is used if this is not present. This value is used
to resolve conflicts from concurrent updates to attributes, elements and objects.

Transactions with earlier atstamp values than the data in the local storage are ig-
nored.

 att: (optional) the key value pairs of the attributes that were changed, if any

Operation: 1037/45

Description: Delete digital object.

Parameters: None

Input: None

Output: None

Operation: 1037/46

Description: Verify object existence

Parameters: None

Input: None

Output: A single <message> structure having a key result with a boolean value indicating
whether or not the object exists within the server. Additional keys and values may

be added to future versions

Operation: 1037/47

Description: Push object transaction. This operation applies only to the repository object. This is

the “push” version of the 1037/44 (retrieve object transactions) operation. Note:

This should be considered experimental as we may want to use a more application

level approach for pushing object changes.

Parameters: object_id: the identifier of the object being updated

elementid: (optional) the name of the data element that is affected by the

trasnsaction

txn_type: The type of modification. This can be any of the values from the

txn_type record in the 1037/44 (retrieve object transactions) operation results.
Input: Whether there is input or not depends on the value of the txn_type parameter.

When the txn_type is set to update_element then the input will contain the bytes
that should be stored in the data element.

Output: None

Operation: 1037/48

Description: Retrieve serialized object.

Parameters: encoding: the name of the encoding used to serialize the object. The only cur-
rently supported value for this is “basiczip” which encodes the data elements as

entries in the zip file format.

Input: None

Output: The serialized form of the object

Operation: 1037/49

Description: Set attributes in object or element

Parameters: elementid: (optional) the name of the data element to which the attributes apply.
If no elementid is given, the attributes will apply to the target object itself.

Att: The attributes to be applied to the object or data element. These attributes
are presented as a set of key value pairs in a <message> structure.

Input: None

Output: None

Operation: 1037/50

Description: Get attributes for object and/or elements

Parameters: elementid: (optional) the name of the data element for which the attributes are
being requested. If no elementid is given, the object-level attributes will be re-
turned.

Input: None

Output: If the elementid parameter was provided, the output will consist of a single <mes-
sage> structure with message type elementatts and keys elementid and att. The
value of the elementid key will be the name of the element to which the attributes
apply. The value of the att key will be a <sub-message> containing the key-value
pairs that make up the attributes of the element. If no elementid parameter was
provided, the output will consist of a series of <message> structures, the first of

which having message type objatts and one key att that has a value of a <sub-
message> containing the key-value pairs that make up the attributes of the ob-

ject. Subsequent <message> structures will contain the attributes for each ele-

ment ID as defined above.

Operation: 1037/51

Description: Delete attributes for object or element

Parameters: elementid: (optional) the name of the data element from which the attributes
should be deleted. If no elementid is given, the named attributes will be deleted

from the object itself.

att: A string array containing the attribute keys that are to be deleted
Input: None

Output: None

Operation: 1037/52

Description: Grant encryption key. This method is invoked on an object in order to “add” an

encrypted bit of information to the target object. The encrypted bit of informa-

tion is often an encryption key that has itself been encrypted with the public key

associated with the target object. This operation will cause the given information

to be added to an object in a new, uniquely named (within the target object)

data element.

Parameters: None

Input: The encrypted information

Output: None

3.4. Depositing a Digital Object

Depositing a digital object is a matter of creating the digital object and then adding

data to it. In most cases the creator of the object should also set object and data-

level attributes to make it easier for entities that wish to interact with the object and

the data elements within.

An object can be created by invoking the 'create object' operation on the repository.

In this case we will register the object in the repository having identifier

'1039/repository'. The create-object operation can therefore be described as:

 1039/repository.1037/1() | <objectid>

Which indicates an invocation of the Create Digital Object operation (1037/1) on the

given server object (1039/repository), with the result being stored in the variable <ob-

jectid>. The server takes care of calculating a unique object ID and registering that ID

in the Handle System. The new <objectid> handle will contain a reference to the

1039/repository as the location of the digital object. The client also has the option of

specifying the identifier for the new object by passing the objectid parameter in the

operation invocation. Clients that supply the object ID are responsible for registering

that identifier in the handle system so that it refers to the digital object server.

Now that the empty object exists, we can add data to it:

To store data in the data element named "content":

 <data> | <objectid>.1037/6 (elementid=content)

To set the "mime-type" attribute for the new data element:

 <objectid>.1037/49 (elementid=content&att.mime-type=text/plain)

To set the "creator" attribute for the object:

 <objectid>.1037/49 (att.creator=myid)

3.5. Accessing the Document as a Digital Object

Accessing the digital object is similar to the deposit process. Accessing the information

within the digital object is done by invoking the following operations:

To get the document content:

 <objectid>.1037/5 (elementid=content) | <data>

To list the attributes for the object (which include the element attributes):

 <objectid>.1037/50 | <documentattributes>

